 SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Tangit Cleanser PVC-U/C ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>KETONES, LIQUID, N.O.S. (contains acetone and methyl ethyl ketone)</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses | Cleanser for use prior to applying adhesive for joining plastic pipes. |

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Stockyard Industries PTY. LTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>54 King Street Clifton Queensland 4361 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 7 4697 3344</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 7 4697 3352</td>
</tr>
<tr>
<td>Website</td>
<td>http://www.stockyardindustries.com</td>
</tr>
<tr>
<td>Email</td>
<td>sales@stockyardindustries.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

 SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

<table>
<thead>
<tr>
<th>Poisons Schedule</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Flammable Liquid Category 2, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - single exposure Category 3 (narcotic effects)</td>
</tr>
</tbody>
</table>

Label elements

<table>
<thead>
<tr>
<th>Hazard pictogram(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| SIGNAL WORD | DANGER |

Hazard statement(s)

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H225</td>
<td>Highly flammable liquid and vapour.</td>
</tr>
<tr>
<td>H319</td>
<td>Causes serious eye irritation.</td>
</tr>
<tr>
<td>H335</td>
<td>May cause respiratory irritation.</td>
</tr>
<tr>
<td>H336</td>
<td>May cause drowsiness or dizziness.</td>
</tr>
<tr>
<td>AUH066</td>
<td>Repeated exposure may cause skin dryness and cracking.</td>
</tr>
</tbody>
</table>

Precautionary statement(s) Prevention

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P210</td>
<td>Keep away from heat/sparks/open flames/hot surfaces. - No smoking.</td>
</tr>
<tr>
<td>P271</td>
<td>Use only outdoors or in a well-ventilated area.</td>
</tr>
<tr>
<td>P240</td>
<td>Ground/bond container and receiving equipment.</td>
</tr>
<tr>
<td>P241</td>
<td>Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.</td>
</tr>
<tr>
<td>P242</td>
<td>Use only non-sparking tools.</td>
</tr>
<tr>
<td>P243</td>
<td>Take precautionary measures against static discharge.</td>
</tr>
</tbody>
</table>
P261 Avoid breathing mist/vapours/spray.
P280 Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement(s) Response
P370+P378 In case of fire: Use alcohol resistant foam or normal protein foam for extinguition.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P312 Call a POISON CENTER or doctor/physician if you feel unwell.
P337+P313 If eye irritation persists: Get medical advice/attention.
P303+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.
P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

Precautionary statement(s) Storage
P403+P235 Store in a well-ventilated place. Keep cool.
P405 Store locked up.

Precautionary statement(s) Disposal
P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% (weight)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>78-93-3</td>
<td>30-60</td>
<td>methyl ethyl ketone</td>
</tr>
<tr>
<td>67-64-1</td>
<td>30-60</td>
<td>acetone</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Assess respiratory function and, if necessary, perform chest X-rays to check for chemical pneumonitis.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Ingestion
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed
Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmaceutically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For acute or short term repeated exposures to acetone:
- Symptoms of acetone exposure approximate ethanol intoxication.
- About 20% is expired by the lungs and the rest is metabolised. Alveolar air half-life is about 4 hours following two hour inhalation at levels near the Exposure Standard; in overdose, saturable metabolism and limited clearance, prolong the elimination half-life to 25-30 hours.
- There are no known antidotes and treatment should involve the usual methods of decontamination followed by supportive care.

[Ellenhorn and Barceloux: Medical Toxicology]

Management:
Measurement of serum and urine acetone concentrations may be useful to monitor the severity of ingestion or inhalation.

Inhalation Management:
- Maintain a clear airway, give humidified oxygen and ventilate if necessary.
- If respiratory irritation occurs, assess respiratory function and, if necessary, perform chest X-rays to check for chemical pneumonitis.
- Consider the use of steroids to reduce the inflammatory response.
- Treat pulmonary oedema with PEEP or CPAP ventilation.

Dermal Management:
- Remove any remaining contaminated clothing, place in double sealed, clear bags, label and store in secure area away from patients and staff.

Continued...
Irrigate with copious amounts of water.
An emollient may be required.

Eye Management:
Irrigate thoroughly with running water or saline for 15 minutes.
Stain with fluorescein and refer to an ophthalmologist if there is any uptake of the stain.

Oral Management:
No GASTRIC LAVAGE OR EMETIC
Encourage oral fluids.

Systemic Management:
Monitor blood glucose and arterial pH.
Ventilate if respiratory depression occurs.
If patient unconscious, monitor renal function.
Symptomatic and supportive care.

The Chemical Incident Management Handbook:
Guy's and St. Thomas' Hospital Trust, 2000

BIOLOGICAL EXPOSURE INDEX
These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Sampling Time</th>
<th>Index</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone in urine</td>
<td>End of shift</td>
<td>50 mg/L</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS: Non-specific determinant; also observed after exposure to other material

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

Do not use water jets.

Special hazards arising from the substrate or mixture
- Fire Incompatibility: Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fire spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard
- Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat, flame and/or oxidisers.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- Combustion products include: carbon dioxide (CO2)
- Other pyrolysis products typical of burning organic material.
- Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- Collect residues in a flammable waste container.

Major Spills
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.

Continued...
SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Containers, even those that have been emptied, may contain explosive vapours.
- **Do NOT cut, drill, grind, weld or perform similar operations on or near containers.**
- **Contains low boiling substance:**
 - Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.
- **Check for bulging containers.**
- **Vent periodically.**
- **Always release caps or seals slowly to ensure slow dissipation of vapours.**
- **DO NOT allow clothing wet with material to stay in contact with skin.**
- **Avoid all personal contact, including inhalation.**
- **Wear protective clothing when risk of exposure occurs.**
- **Use in a well-ventilated area.**
- **Prevent concentration in hollows and sumps.**
- **DO NOT enter confined spaces until atmosphere has been checked.**
- **Avoid smoking, naked lights, heat or ignition sources.**
- **When handling, DO NOT eat, drink or smoke.**
- **Vapour may ignite on pumping or pouring due to static electricity.**
- **DO NOT use plastic buckets.**
- **Earth and secure metal containers when dispensing or pouring product.**
- **Use spark-free tools when handling.**
- **Avoid contact with incompatible materials.**
- **Keep containers securely sealed.**
- **Avoid physical damage to containers.**
- **Always wash hands with soap and water after handling.**
- **Work clothes should be laundered separately.**
- **Use good occupational work practice.**
- **Observe manufacturer's storage and handling recommendations contained within this SDS.**
- **Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.**

Other information

- **Store in original containers in approved flame-proof area.**
- **No smoking, naked lights, heat or ignition sources.**
- **DO NOT store in pits, depressions, basements or areas where vapours may be trapped.**
- **Keep containers securely sealed.**
- **Store away from incompatible materials in a cool, dry, well-ventilated area.**
- **Protect containers against physical damage and check regularly for leaks.**
- **Observe manufacturer’s storage and handling recommendations contained within this SDS.**

Conditions for safe storage, including any incompatibilities

Suitable container

- **Packing as supplied by manufacturer.**
- **Plastic containers may only be used if approved for flammable liquid.**
- **Check that containers are clearly labelled and free from leaks.**
- **For low viscosity materials (i): Drums and Jerry cans must be of the non-removable head type. (ii) Where a can is to be used as an inner package, the can must have a screwed enclosure.**
- **For materials with a viscosity of at least 2680 cSt (23 deg, C).**
- **For manufactured product having a viscosity of at least 250 cSt (23 deg, C).**
- **Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg, C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.**
- **Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages.**
- **In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert cushioning material in contact with inner and outer packages.**

Storage incompatibility

- **Methyl ethyl ketone:**
 - **reacts violently with strong oxidisers, aldehydes, nitric acid, perchloric acid, potassium tert-butoxide, oleum**
 - **is incompatible with inorganics acids, aliphatic amines, ammonia, caustics, isocyanates, pyridines, chlorosulfonic acid**
 - **forms unstable peroxides in storage, or on contact with propionaldehyde or hydrogen peroxide**
 - **attacks some plastics**
 - **may generate electrostatic charges, due to low conductivity, on flow or agitation**

- **Acetone:**
 - **may react violently with chloroform, activated charcoal, aliphatic amines, bromine, bromine trifluoride, chlorotrimethyl, chloromethane, chromium(VI) acid, chromium(VI) acid, chromium trioxide, chromyl chloride, hexachloroethane, iodine heptfluoride, iodine, liquid oxygen, nitrosyl chloride, nitrosyl perchlorate, nitryl perchlorate, perchloroethyleni, peroxovinylchlorofluoride acid, platinum, potassium tert-butoxide, strong acids, sulfur dichloride, trichloroethene, xenon tetrafluoride**
 - **reacts violently with bromoform and chloroform in the presence of alkali or in contact with alkaline surfaces.**
 - **may form unstable and explosive peroxides in contact with strong oxidisers, fluorne, hydrogen peroxide (90%), sodium perchlorate, 2-methyl-1,3-butadiene**
 - **can increase the explosive sensitivity of nitromethane on contact flow or agitation may generate electrostatic charges due to low conductivity**
 - **dissolves or attacks most rubber, resins, and plastics (polyethylenes, polyester, vinyl ester, PVC, Neoprene, Viton)**

Ketones in this group:
SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>INGREDIENT DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl ethyl ketone</td>
<td>Butanone, 2; (Methyl ethyl ketone; MEK)</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>acetone</td>
<td>Acetone</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl ethyl ketone</td>
<td>3,000 ppm</td>
<td>Not Available</td>
</tr>
<tr>
<td>acetone</td>
<td>2,500 ppm</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:

- solvent, vapours, degreasing etc., evaporating from tank (in still air).
- aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)
- direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

Within each range the appropriate value depends on:

Appropriate engineering controls

- Lower end of the range: 0.25-0.5 m/s (50-100 f/min.)
- Upper end of the range: 0.5-1 m/s (100-200 f/min.)
- 1.25 m/s (200-500 f/min.)

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Continued...
Personal protection

Eye and face protection
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lenses should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection
See Hand protection below

Hands/feet protection
- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 300 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Contaminated gloves should be replaced. As defined in ASTM F-739-96, gloves are rated as:
- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Other protection
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eye wash unit.
- Ensure there is ready access to a safety shower.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot and shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 5,000,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Respiratory protection
Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the “Exposure Standard” (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>A</td>
</tr>
<tr>
<td>PE/EVAL/PE</td>
<td>A</td>
</tr>
<tr>
<td>BUTYL/NEOPRENE</td>
<td>B</td>
</tr>
<tr>
<td>TEFILON</td>
<td>B</td>
</tr>
<tr>
<td>Required Minimum Protection Factor</td>
<td>Half-Face Respirator</td>
</tr>
<tr>
<td>up to 5 x ES</td>
<td>AX-AUS / Class 1</td>
</tr>
<tr>
<td>up to 25 x ES</td>
<td>Air-line*</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>-</td>
</tr>
</tbody>
</table>

Continued...
SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Clear colourless highly flammable liquid with sweet odour; mixes with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>56</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>-16 (CC)</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>HIGHLY FLAMMABLE.</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>13</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>1.8</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>24 @20C</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>Miscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity
- See section 7

Chemical stability
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions
- See section 7

Conditions to avoid
- See section 7

Incompatible materials
- See section 7

Hazardous decomposition products
- See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
- Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then...
repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by nausea, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Exposure to ketone vapours may produce nose, throat and mucous membrane irritation. High concentrations of vapour may produce central nervous system depression characterised by headache, vertigo, loss of coordination, nausea and cardiorespiratory failure. Some ketones produce neurological disorders (polyneuropathy) characterised by bilateral symmetrical paresthesia and muscle weakness primarily in the legs and arms. Acute exposure of humans to high concentrations of methyl ethyl ketone produces irritation to the eyes, nose, and throat. Other effects reported from acute inhalation exposure in humans include central nervous system depression, headache, and nausea.

Easy odour recognition and irritant properties of methyl ethyl ketone means that high vapour levels are readily detected and should be avoided by application of control measures; however, odour fatigue may occur with loss of warning of exposure. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Systemic effects of acetone inhalation exposure include central nervous system depression, light-headedness, incoherent speech, ataxia, stupor, hypotension, tachycardia, metabolic acidosis, hyperglycaemia and ketosis. Rarely, convulsions and tubular necrosis may be evident. Other symptoms of exposure may include restlessness, headache, vomiting, low blood-pressure and rapid and irregular pulse, eye and throat irritation, weakness of the legs and dizziness. Inhalation of high concentrations may produce dryness of the mouth and throat, nausea, uncoordinated movement, loss of coordinated speech, drowsiness and, in severe cases, coma. Inhalation of acetone vapours over long periods causes irritation of the respiratory tract, coughing and headache. Rats exposed to 52200 ppm vapour for 1 hour showed clear signs of narcosis; fatalities occurred at 126600 ppm.

Eye

Accidental ingestion of the material may be damaging to the health of the individual.

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. The material may produce moderate skin irritation; limited evidence or practical experience suggests that the material is:

- produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Dermatitis has been reported in humans following dermal exposure to methyl ethyl ketone. Tests involving acute exposure of rabbits has shown methyl ethyl ketone to have high acute toxicity from dermal exposure.

Open cuts, abrasions or irritated skin should not be exposed to this material.

Entry into the bloodstream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Dermal (rabbit) LD50: =20 mg/kg

Inhalation (rat) LC50: 47 mg/l/8H

Oral (rat) LD50: 2054 mg/kg

Skin (rabbit): 402 mg/24 hr - mild

Skin (rabbit): 13.78mg/24 hr open

Eye irritation and conjunctivitis may occur from direct contact, or via aerosol or vapour. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Workers exposed to 700 ppm acetone for 3 hours/day for 7-15 years showed inflammation of the respiratory tract, stomach and duodenum, attacks of giddiness and loss of strength. Exposure to acetone may enhance liver toxicity of chlorinated solvents.

Acute exposure of humans to high concentrations of methyl ethyl ketone produces irritation to the eyes, nose, and throat. Other effects reported from acute inhalation exposure in humans include central nervous system depression, headache, and nausea.

Easy odour recognition and irritant properties of methyl ethyl ketone means that high vapour levels are readily detected and should be avoided by application of control measures; however, odour fatigue may occur with loss of warning of exposure. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Systemic effects of acetone inhalation exposure include central nervous system depression, light-headedness, incoherent speech, ataxia, stupor, hypotension, tachycardia, metabolic acidosis, hyperglycaemia and ketosis. Rarely, convulsions and tubular necrosis may be evident. Other symptoms of exposure may include restlessness, headache, vomiting, low blood-pressure and rapid and irregular pulse, eye and throat irritation, weakness of the legs and dizziness. Inhalation of high concentrations may produce dryness of the mouth and throat, nausea, uncoordinated movement, loss of coordinated speech, drowsiness and, in severe cases, coma. Inhalation of acetone vapours over long periods causes irritation of the respiratory tract, coughing and headache. Rats exposed to 52200 ppm vapour for 1 hour showed clear signs of narcosis; fatalities occurred at 126600 ppm.

Eye

Dermal (rabbit) LD50: 6400-8000 mg/kg

Inhalation (rat) LC50: 47 mg/l/8H

Oral (rat) LD50: 2054 mg/kg

Skin (rabbit): 402 mg/24 hr - mild

Skin (rabbit): 13.78mg/24 hr open

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Dermatitis has been reported in humans following dermal exposure to methyl ethyl ketone. Tests involving acute exposure of rabbits has shown methyl ethyl ketone to have high acute toxicity from dermal exposure.

Open cuts, abrasions or irritated skin should not be exposed to this material.

Entry into the bloodstream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Dermal (rabbit) LD50: 20 mg/kg

Inhalation (rat) LC50: 100.2 mg/l/8H

Oral (rat) LD50: 1800-7300 mg/kg

Skin (rabbit): 402 mg/24 hr - mild

Skin (rabbit): 13.78mg/24 hr open

Eye irritation and conjunctivitis may occur from direct contact, or via aerosol or vapour. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Workers exposed to 700 ppm acetone for 3 hours/day for 7-15 years showed inflammation of the respiratory tract, stomach and duodenum, attacks of giddiness and loss of strength. Exposure to acetone may enhance liver toxicity of chlorinated solvents.
METHYL ETHYL KETONE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermides. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Methyl ethyl ketone is considered to have a low order of toxicity; however methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl n-butyl ketone with methyl ethyl ketone show increase in peripheral neuropathy, a progressive disorder of nerves of extremities. Combinations with chloroform also show increase in toxicity.

ACETONE

The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitizer but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect levels in the drinking water study were 1% for male rats (905 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5250 mg/m3 for both rats and mice. Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals.

The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 have been reported. Neurobehavioural studies with acetone-exposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m3 were not associated with any dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m3 or greater.

Toxicity

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (HR)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin Irritation/Corrosion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious Eye Damage/Irritation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory or Skin sensitisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutagenicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspiration Hazard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Data either not available or does not fill the criteria for classification
- Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangit Cleanser PVC-U/C ABS</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>methyl ethyl ketone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>2-950mg/L</td>
<td>2</td>
</tr>
<tr>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>5-91mg/L</td>
<td>2</td>
</tr>
<tr>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>1-972mg/L</td>
<td>2</td>
</tr>
<tr>
<td>EC0</td>
<td>96</td>
<td>Fish</td>
<td>1-848mg/L</td>
<td>2</td>
</tr>
<tr>
<td>NOEC</td>
<td>96</td>
<td>Fish</td>
<td>1-170mg/L</td>
<td>2</td>
</tr>
<tr>
<td>acetone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>5-540mg/L</td>
<td>2</td>
</tr>
<tr>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>>100mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend:
- Data either not available or does not fill the criteria for classification
- Data obtained from manufacturer’s SDS. Unless otherwise specified, data extracted from RTECS - Register of Toxic Effect of Chemical Substances
Legend:
Extracted from 1. IUCLID Toxicity Data
2. Europe ECHA Registered Substances - Ecotoxicological Information
 - Aquatic Toxicity 3. EPIWIN Suite V3.12 (OSAR) - Aquatic Toxicity Data (Estimated)
 - 4. US EPA, Ecotox database
 - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data
 - 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl ethyl ketone</td>
<td>LOW (Half-life = 14 days)</td>
<td>LOW (Half-life = 26.75 days)</td>
</tr>
<tr>
<td>acetone</td>
<td>LOW (Half-life = 14 days)</td>
<td>MEDIUM (Half-life = 116.25 days)</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl ethyl ketone</td>
<td>LOW (LogKOW = 0.29)</td>
</tr>
<tr>
<td>acetone</td>
<td>LOW (BCF = 0.69)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl ethyl ketone</td>
<td>MEDIUM (KOC = 3.827)</td>
</tr>
<tr>
<td>acetone</td>
<td>HIGH (KOC = 1.981)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

- Marine Pollutant: NO
- Not Applicable
- HAZCHEM: *3YE*

Land transport (ADG)

- UN number: 1224
- UN proper shipping name: KETONES, LIQUID, N.O.S. (contains acetone and methyl ethyl ketone)
- Transport hazard class(es): Class 3
- Subrisk: Not Applicable
- Packing group: II
- Environmental hazard: Not Applicable
- Special precautions for user: Special provisions: 274
 - Limited quantity: 1 L

Air transport (ICAO-IATA / DGR)

- UN number: 1224
- UN proper shipping name: Ketones, liquid, n.o.s. * (contains acetone and methyl ethyl ketone)
Transport hazard class(es)

<table>
<thead>
<tr>
<th>ICAO/IATA Class</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAO / IATA Subrisk</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>ERG Code</td>
<td>3L</td>
</tr>
</tbody>
</table>

Packing group

| II |

Environmental hazard

| Not Applicable |

Special precautions for user

<table>
<thead>
<tr>
<th>Special provisions</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo Only Packing Instructions</td>
<td>364</td>
</tr>
<tr>
<td>Cargo Only Maximum Qty / Pack</td>
<td>60 L</td>
</tr>
<tr>
<td>Passenger and Cargo Packing Instructions</td>
<td>353</td>
</tr>
<tr>
<td>Passenger and Cargo Maximum Qty / Pack</td>
<td>5 L</td>
</tr>
<tr>
<td>Passenger and Cargo Limited Quantity Packing Instructions</td>
<td>Y341</td>
</tr>
<tr>
<td>Passenger and Cargo Limited Maximum Qty / Pack</td>
<td>1 L</td>
</tr>
</tbody>
</table>

Sea transport (IMDG-Code / GGVSee)

| UN number | 1224 |
| UN proper shipping name | KETONES, LIQUID, N.O.S. (contains acetone and methyl ethyl ketone) |

<table>
<thead>
<tr>
<th>Transport hazard class(es)</th>
<th>IMDG Class</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMDG Subrisk</td>
<td>Not Applicable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packing group</th>
<th>II</th>
</tr>
</thead>
</table>

| Environmental hazard | Not Applicable |

<table>
<thead>
<tr>
<th>Special precautions for user</th>
<th>EMS Number</th>
<th>F-E , S-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special provisions</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>Limited Quantities</td>
<td>1 L</td>
<td></td>
</tr>
</tbody>
</table>

Transport in bulk according to Annex II of MARPOL and the IBC code

| Not Applicable |

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

METHYL ETHYL KETONE (78-93-3) is found on the following regulatory lists:

- **Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List**
- **Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes**
- **Australia Exposure Standards**
- **Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals**
- **Australia Inventory of Chemical Substances (ACIS)**
- **Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)**
- **Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)**
- **Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index**

ACETONE (67-64-1) is found on the following regulatory lists:

- **Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List**
- **Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes**
- **Australia Exposure Standards**
- **Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals**
- **Australia Inventory of Chemical Substances (ACIS)**
- **Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)**
- **Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)**
- **Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index**

National Inventory Status

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>No (acetone; methyl ethyl ketone)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Yes</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Yes</td>
</tr>
</tbody>
</table>
SECTION 16 OTHER INFORMATION

Revision Date 16/05/2019
Initial Date 16/05/2019

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC — TWA: Permissible Concentration-Time Weighted Average
PC — STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.