Red Marking Spray

Stockyard Industries PTY. LTD

Chemwatch: 5321-79 Version No: 2.1.1.1

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: 04/09/2018 Print Date: 06/09/2018 L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Red Marking Spray
Synonyms	Not Available
Proper shipping name	AEROSOLS
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Paint.

Details of the supplier of the safety data sheet

Registered company name	Stockyard Industries PTY. LTD							
Address	54 King Street Clifton Queensland 4361 Australia							
Telephone	+61 7 4697 3344							
Fax	+61 7 4697 3352							
Website	http://www.stockyardindustries.com							
Email	sales@stockradindustries.com.au							

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	Not Applicable					
Classification [1] Aerosols Category 1, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects)						
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI					

Label elements

Hazard pictogram(s)

SIGNAL WORD

Hazard statement(s)

H222	Extremely flammable aerosol.							
H319 Causes serious eye irritation.								
H336	May cause drowsiness or dizziness.							
AUH044	Risk of explosion if heated under confinement.							

Precautionary statement(s) Prevention

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.							
P211	P211 Do not spray on an open flame or other ignition source.							
P251 Pressurized container: Do not pierce or burn, even after use.								
P271	Use only outdoors or in a well-ventilated area.							
P261	Avoid breathing mist/vapours/spray.							
P280	Wear protective gloves/protective clothing/eye protection/face protection.							

Chemwatch: 5321-79 Page 2 of 11 Issue Date: 04/09/2018 Version No: 2.1.1.1 Print Date: 06/09/2018

Red Marking Spray

Precautionary statement(s) Response

P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.								
P312	Call a POISON CENTER or doctor/physician if you feel unwell.							
P337+P313	If eye irritation persists: Get medical advice/attention.							
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.							

Precautionary statement(s) Storage

P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name				
64-17-5	30-60	ethanol				
67-63-0	30-60	isopropanol				
68476-85-7.	>30	hydrocarbon propellant				

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.
Inhalation	If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	► Not considered a normal route of entry.

Indication of any immediate medical attention and special treatment needed

Chemwatch: 5321-79 Page 3 of 11 Issue Date: 04/09/2018 Version No: 2.1.1.1 Print Date: 06/09/2018

Red Marking Spray

For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:

- Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice
- Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhom and Barceloux: Medical Toxicology] Treat symptomatically.

For acute or short term repeated exposures to ethanol:

- Acute ingestion in non-tolerant patients usually responds to supportive care with special attention to prevention of aspiration, replacement of fluid and correction of nutritional deficiencies (magnesium, thiamine pyridoxine, Vitamins C and K).
- ▶ Give 50% dextrose (50-100 ml) IV to obtunded patients following blood draw for glucose determination.
- ▶ Comatose patients should be treated with initial attention to airway, breathing, circulation and drugs of immediate importance (glucose, thiamine).
- Decontamination is probably unnecessary more than 1 hour after a single observed ingestion. Cathartics and charcoal may be given but are probably not effective in single ingestions.
- Fructose administration is contra-indicated due to side effects.

For acute or short term repeated exposures to isopropanol:

- Rapid onset respiratory depression and hypotension indicates serious ingestions that require careful cardiac and respiratory monitoring together with immediate intravenous access.
- Rapid absorption precludes the usefulness of emesis or lavage 2 hours post-ingestion. Activated charcoal and cathartics are not clinically useful. Ipecac is most useful when given 30 mins. post-ingestion.
- ▶ There are no antidotes
- Management is supportive. Treat hypotension with fluids followed by vasopressors.
- Watch closely, within the first few hours for respiratory depression; follow arterial blood gases and tidal volumes
- Ice water lavage and serial haemoglobin levels are indicated for those patients with evidence of gastrointestinal bleeding.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

SMALL FIRE:

Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

Special hazards arising from the substrate or mixture

Eiro Incompatibility	 Avoid contomination with

Fire Fighting

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

۰	F	∖ler	t Fire	:	Brig	ade	and	tel	l th	nem	location	and	nature	of	hazard.

▶ May be violently or explosively reactive.

Wear breathing apparatus plus protective gloves.

Prevent, by any means available, spillage from entering drains or water course.

If safe, switch off electrical equipment until vapour fire hazard removed.

Use water delivered as a fine spray to control fire and cool adjacent area.

DO NOT approach containers suspected to be hot.

Cool fire exposed containers with water spray from a protected location.

If safe to do so, remove containers from path of fire.

► Equipment should be thoroughly decontaminated after use.

▶ Liquid and vapour are highly flammable.

Severe fire hazard when exposed to heat or flame.

Vapour forms an explosive mixture with air.

Severe explosion hazard, in the form of vapour, when exposed to flame or spark,

Vapour may travel a considerable distance to source of ignition.

Heating may cause expansion or decomposition with violent container rupture.

Rupturing containers may rocket and scatter burning materials.

Aerosol cans may explode on exposure to naked flames Hazards may not be restricted to pressure effects.

May emit acrid, poisonous or corrosive fumes.

▶ On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include: carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

HAZCHEM

Fire/Explosion Hazard

Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

Clean up all spills immediately.

Avoid breathing vapours and contact with skin and eyes

Wear protective clothing, impervious gloves and safety glasses.

Shut off all possible sources of ignition and increase ventilation.

▶ Wipe up.

Chemwatch: 5321-79 Page 4 of 11 Issue Date: 04/09/2018 Version No: 2.1.1.1 Print Date: 06/09/2018

Red Marking Spray

If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. ▶ Clear area of personnel and move upwind ▶ Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses ▶ No smoking, naked lights or ignition sources. **Major Spills** Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. ► Avoid all personal contact, including inhalation.

- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmo sphere has been checked
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- DO NOT incinerate or puncture aerosol cans
- DO NOT spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- ► Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- ▶ Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can ► Store in original containers in approved flammable liquid storage area.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Keep containers securely sealed. Contents under pressure.
- Store away from incompatible materials.
- Store in a cool, dry, well ventilated area.
- ► Avoid storage at temperatures higher than 40 deg C.
- Store in an upright position.
- Protect containers against physical damage.
- Check regularly for spills and leaks
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

- ▶ DO NOT use aluminium or galvanised containers
- Aerosol dispenser.
- ► Check that containers are clearly labelled

Storage incompatibility

▶ Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	ethanol	Ethyl alcohol	1000 ppm / 1880 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	isopropanol	Isopropyl alcohol	400 ppm / 983 mg/m3	1230 mg/m3 / 500 ppm	Not Available	Not Available
Australia Exposure Standards	hydrocarbon propellant	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

				TEEL-3
ethanol Ethyl alcohol; (Et	thanol)	Not Available	Not Available	15000 ppm
isopropanol Isopropyl alcohol	I	400 ppm	2000 ppm	12000 ppm
hydrocarbon propellant Liquified petrolet	um gas; (L.P.G.)	65,000 ppm	2.30E+05 ppm	4.00E+05 ppm

Ingredient	Original IDLH	Revised IDLH
------------	---------------	--------------

Red Marking Spray

Issue Date: 04/09/2018 Print Date: 06/09/2018

ethanol	3,300 ppm	Not Available
isopropanol	2,000 ppm	Not Available
hydrocarbon propellant	2,000 ppm	Not Available

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Speed:
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s
direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used

Personal protection

No special equipment for minor exposure i.e. when handling small quantities

Eye and face protection

OTHERWISE: For potentially moderate or heavy exposures:

- Safety glasses with side shields.
- NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them.

Skin protection

Hands/feet protection

- ▶ No special equipment needed when handling small quantities.
- OTHERWISE:
- For potentially moderate exposures:
- ▶ Wear general protective gloves, eg. light weight rubber gloves.
- For potentially heavy exposures:
- ▶ Wear chemical protective gloves, eg. PVC. and safety footwear.

Body protection

See Other protection below

Other protection

No special equipment needed when handling small quantities. OTHERWISE:

- Overalls.
 - Skin cleansing cream.
 - Eyewash unit.
 - Do not spray on hot surfaces

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

generated selection:

Red Marking Spray

Material	СРІ
NEOPRENE	Α
NITRILE	Α
NITRILE+PVC	Α

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	Air-line*	AX-2	AX-PAPR-2 ^
up to 20 x ES	-	AX-3	-

Issue Date: **04/09/2018**Print Date: **06/09/2018**

Red Marking Spray

PE/EVAL/PE	A
PVC	В
BUTYL	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

00. 50		A 1 . 11	
20+ x ES	-	Air-line**	-

* - Continuous-flow; ** - Continuous-flow or positive pressure demand ^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Red highly flammable liquid with alcoholic odour; does not mix with water.		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

	*
Reactivity	See section 7
Chemical stability	Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertico.

Inhaled

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination.

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Chemwatch: 5321-79

Page 7 of 11

Issue Date: 04/09/2018

Version No: 2.1.1.1

Print Date: 06/09/2018

Red Marking Spray

Material is highly volatile and may guickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. WARNING: Intentional misuse by concentrating/inhaling contents may be lethal. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious Ingestion damage to the health of the individual. The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either: produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the Skin Contact epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Limited evidence suggests that repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause Eve significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical Long-term exposure to ethanol may result in progressive liver damage with fibrosis or may exacerbate liver injury caused by other agents. Repeated ingestion of ethanol by pregnant women may adversely affect the central nervous system of the developing foetus, producing effects collectively described as foetal alcohol syndrome. These include mental and physical retardation, learning disturbances, motor and language deficiency, behavioural disorders and reduced head size. Consumption of ethanol (in alcoholic beverages) may be linked to the development of Type I hypersensitivities in a small number of individuals. Symptoms, which may appear immediately after consumption, include conjunctivitis, angioedema, dyspnoea, and urticarial rashes. The causative agent may be acetic acid, a metabolite (1). (1) Boehncke W.H., & H.Gall, Clinical & Experimental Allergy, 26, 1089-1091, 1996 Principal route of occupational exposure to the gas is by inhalation Long term or repeated ingestion exposure of isopropanol may produce incoordination, lethargy and reduced weight gain. Chronic Repeated inhalation exposure to isopropanol may produce narcosis, incoordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in the adult animals. Isopropanol does not cause genetic damage in bacterial or mammalian cell cultures or in animals.

There are inconclusive reports of human sensitisation from skin contact with isopropanol. Chronic alcoholics are more tolerant of systemic isopropanol than are persons who do not consume alcohol; alcoholics have survived as much as 500 ml. of 70% isopropanol.

Continued voluntary drinking of a 2.5% aqueous solution through two successive generations of rats produced no reproductive effects.

NOTE: Commercial isopropanol does not contain "isopropyl oil". An excess incidence of sinus and laryngeal cancers in isopropanol production workers has been shown to be caused by the byproduct "isopropyl oil". Changes in the production processes now ensure that no byproduct is formed. Production changes include use of dilute sulfuric acid at higher temperatures.

WARNING: Aerosol containers may present pressure related hazards

	TOXICITY	IRRITATION
Red Marking Spray	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 17100 mg/kg ^[1]	Eye (rabbit): 500 mg SEVERE
ethanol	Inhalation (rat) LC50: 63926.976 mg/l/4h ^[2]	Eye (rabbit):100mg/24hr-moderate
	Oral (rat) LD50: 7060 mg/kg ^[2]	Skin (rabbit):20 mg/24hr-moderate
		Skin (rabbit):400 mg (open)-mild
	TOXICITY	IRRITATION
isopropanol	Dermal (rabbit) LD50: 12800 mg/kg ^[2]	Eye (rabbit): 10 mg - moderate
	Inhalation (rat) LC50: 72.6 mg/l/4h ^[2]	Eye (rabbit): 100 mg - SEVERE
	Oral (rat) LD50: 5000 mg/kg ^[2]	Eye (rabbit): 100mg/24hr-moderate
		Skin (rabbit): 500 mg - mild
	TOXICITY	IRRITATION
hydrocarbon propellant	Inhalation (rat) LC50: 84.684 mg/l15 min ^[1]	Not Available
	Inhalation (rat) LC50: 90.171125 mg/15 min ^[1]	

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

ETHANOL

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is

Chemwatch: 5321-79 Page 8 of 11 Issue Date: 04/09/2018
Version No: 2.1.1.1 Print Date: 06/09/2018

Red Marking Spray

often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

For isopropanol (IPA):

Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat.

Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred.

Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney.

Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful.

Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity

Genotoxicity: All genotoxicity assays reported for isopropanol have been negative

Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

No significant acute toxicological data identified in literature search.

for Petroleum Hydrocarbon Gases:

In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mammalian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas constituent endpoint toxicity values (LC50, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different for different mammalian endpoints, again, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas.

All Hydrocarbon Gases Category members contain primarily hydrocarbons (i.e., alkanes and alkenes) and occasionally asphyxiant gases like hydrogen. The inorganic components of the petroleum hydrocarbon gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diesel fuel, lubricating oils, etc.), the inorganic and hydrocarbon constituents of hydrocarbon gases can be evaluated for hazard individually to then predict the screening level hazard of the Category members

**Acute toxicity: No acute toxicity LC50 values have been derived for the C1 - C4 and C5 - C6 hydrocarbon (HC) fractions because no mortality was observed at the highest exposure levels tested (~ 5 mg/l) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum

hydrocarbon gas constituents from most to least toxic is:
C5-C6 HCs (LC50 > 1063 ppm) > C1-C4 HCs (LC50 > 10,000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 129,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

HYDROCARBON PROPELLANT

ISOPROPANOL

Repeat dose toxicity: With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected petroleum hydrocarbon gas constituents. Based upon LOAEL values, the order of order of repeated-dose toxicity of these constituents from most toxic to the least toxic is:

Benzene (LOAEL .>=10 ppm) > C1-C4 HCs (LOAEL = 5,000 ppm; assumed to be 100% 2-butene) > C5-C6 HCs (LOAEL = 6,625 ppm) > butadiene (LOAEL = 8,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

Genotoxicity:

In vitro: The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vitro* genotoxicity. The exceptions are: benzene and 1,3-butadiene, which are genotoxic in bacterial and mammalian *in vitro* test systems.

In vivo: The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vivo* genotoxicity. The exceptions are benzene and 1.3-butadiene, which are genotoxic in *in vivo* test systems

Developmental toxicity: Developmental effects were induced by two of the petroleum hydrocarbon gas constituents, benzene and the C5 -C6 hydrocarbon fraction. No developmental toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for developmental toxicity. Based on LOAEL and NOAEL values, the order of acute toxicity of these constituents from most to least toxic is:

Benzene (LOAEL = 20 ppm) > butadiene (NOAEL .>=1,000 ppm) > C5-C6 HCs (LOAEL = 3,463 ppm) > C1-C4 HCs (NOAEL >=5,000 ppm; assumed to be 100% 2-butene) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

Reproductive toxicity: Reproductive effects were induced by only two petroleum hydrocarbon gas constituents, benzene and isobutane (a constituent of the the C1-C4 hydrocarbon fraction). No reproductive toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for reproductive toxicity. Based on LOAEL and NOAEL values, the order of reproductive toxicity of these constituents from most to least toxic is:

Benzene (LOAEL = 300 ppm) > butadiene (NOAEL .>=6,000 ppm) > C5-C6 HCs (NOAEL .>=6,521 ppm) > C1-C4 HCs (LOAEL = 9,000 ppm; assumed to be 100% isobutane) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen)

Acute Toxicity	0	Carcinogenicity	0
Skin Irritation/Corrosion	0	Reproductivity	0
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	0	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

★ - Data available but does not fill the criteria for classification

■ The content of the

✓ – Data available to make classification

O - Data Not Available to make classification

Chemwatch: 5321-79 Page 9 of 11

Version No: 2.1.1.1 Pad Marking Spray

Red Marking Spray

Issue Date: **04/09/2018** Print Date: **06/09/2018**

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Red Marking Spray Not	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	42mg/L	4
ethanol	EC50	48	Crustacea	2mg/L	4
	EC50	96	Algae or other aquatic plants	17.921mg/L	4
NO	NOEC	2016	Fish	0.000375mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	>1400mg/L	4
•	EC50	48	Crustacea	12500mg/L	5
isopropanol	EC50	72	Algae or other aquatic plants	>1000mg/L	1
	EC29	504	Crustacea	=100mg/L	1
NO	NOEC	5760	Fish	0.02mg/L	4
hydrocarbon propellant	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
ethanol	LOW (Half-life = 2.17 days)	LOW (Half-life = 5.08 days)
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
ethanol	LOW (LogKOW = -0.31)
isopropanol	LOW (LogKOW = 0.05)

Mobility in soil

Ingredient	Mobility
ethanol	HIGH (KOC = 1)
isopropanol	HIGH (KOC = 1.06)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Product / Packaging disposal
- Where in doubt contact the responsible authority.
 Consult State Land Waste Management Authority for disposal.
- ▶ Discharge contents of damaged aerosol cans at an approved site.
- Allow small quantities to evaporate.
- ► DO NOT incinerate or puncture aerosol cans.
- ▶ Bury residues and emptied aerosol cans at an approved site.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Chemwatch: **5321-79**Version No: **2.1.1.1**

Red Marking Spray

Issue Date: **04/09/2018** Print Date: **06/09/2018**

Marine Pollutant

HAZCHEM Not Applicable

Land transport (ADG)

UN number	1950
UN proper shipping name	AEROSOLS
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable
Packing group	Not Applicable
Environmental hazard	Not Applicable
Special precautions for user	Special provisions 63 190 277 327 344 Limited quantity 1000ml

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee)

UN number	1950
UN proper shipping name	AEROSOLS
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not Applicable
Packing group	Not Applicable
Environmental hazard	Not Applicable
Special precautions for user	EMS Number F-D, S-U Special provisions 63 190 277 327 344 381 959 Limited Quantities 1000ml

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ETHANOL(64-17-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	B (Part 3)
Australia Inventory of Chemical Substances (AICS)	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)
	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule
	5

ISOPROPANOL(67-63-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC
	Monographs

\parallel HYDROCARBON PROPELLANT(68476-85-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	E (Part 2)
Australia Inventory of Chemical Substances (AICS)	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule
	5

National Inventory Status

National Inventory	Status
Australia - AICS	Y
Canada - DSL	Υ
Canada - NDSL	N (ethanol; hydrocarbon propellant; isopropanol)
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	Υ

 Chemwatch: 5321-79
 Page 11 of 11
 Issue Date: 04/09/2018

 Version No: 2.1.1.1
 Print Date: 06/09/2018

Red Marking Spray

Japan - ENCS	Y
Korea - KECI	Y
New Zealand - NZIoC	Y
Philippines - PICCS	Υ
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	04/09/2018
Initial Date	04/09/2018

Other information

Ingredients with multiple cas numbers

Name	CAS No
ethanol	64-17-5, 2348-46-1
hydrocarbon propellant	68476-85-7., 68476-86-8.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.